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Transient natural convection flows around a thin fin on the sidewall of a differentially
heated cavity, which includes a lower intrusion under the fin, a starting plume
bypassing the fin and a thermal flow entrained into the vertical thermal boundary layer
downstream of the fin in a typical case, are investigated using a scaling analysis and
direct numerical simulations. The obtained scaling relations show that the thickness
and velocity of the transient natural convection flows around the fin are determined
by different dynamic and energy balances, which can be either a buoyancy-viscous
balance or a buoyancy-inertial balance, depending on the Rayleigh number, the
Prandtl number and the fin length. A time scale of the transition from a buoyancy-
viscous flow regime to a buoyancy-inertial flow regime is obtained. The major scaling
relations quantifying the transient natural convection flows are also validated by
direct numerical simulations. In general, there is a good agreement between the
scaling predictions and the corresponding numerical results.

1. Introduction
Transient natural convection flows in a cavity are common in industrial applications

such as heat exchangers, solar collectors and nuclear reactors. Understanding of these
transient natural convection flows is also of fundamental interest in the fluid mechanics
community due to their relevance to fluid mechanics problems over a wide range of
scales. A wide literature on transient natural convection has been reported over the
past three decades (see e.g. Patterson & Imberger 1980; Ostrach 1988; Hyun 1994).

Previous studies (see e.g. Patterson & Imberger 1980) have shown that following
sudden heating, a vertical thermal boundary layer forms adjacent to the sidewall
of a differentially heated cavity and the ceiling of the cavity forces a horizontal
intrusion flow underneath the ceiling. The vertical thermal boundary layer has
received considerable attention since it produces a thermal force to drive natural
convection flows in the cavity (see e.g. Elder 1965a, 1965b; Gill 1966). Fundamental
scaling relations to characterize the velocity and thickness of the vertical thermal
boundary layer and the transition time from an unsteady state to a steady state were
also obtained by Patterson & Imberger (1980), some of which were confirmed by
experimental measurements (e.g. Xu, Patterson & Lei 2005). Further studies of the
scaling relations of the thermal boundary layer were carried out recently by Lin,
Armfield & Patterson (2007) and Lin et al. (2009), who also considered the Prandtl
number dependence. Moreover, it is found that for the case of sudden heating,
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perturbations, which are referred to as leading-edge effect (LEE), arise in the vicinity
of the leading edge of the vertical thermal boundary layer and propagate downstream
(see e.g. Goldstein & Briggs 1964; Mahajan & Gebhart 1978; Joshi & Gebhart 1987;
Armfield & Patterson 1992; Patterson et al. 2002).

Apart from producing the thermal force, the state of the vertical thermal boundary
layer in different flow regimes determines the heat transfer rate through the
differentially heated cavity. Accordingly, it is of practical significance for industrial
applications to manipulate the flow regimes of the vertical thermal boundary layer. A
simple passive approach to alter the vertical thermal boundary layer flow is to place
a fin on the sidewall, and thus the study of the natural convection flows around a
fin has been extensively reported in the literature over the past three decades (see e.g.
Bejan 1983; Oosthuizen & Paul 1985; Shi & Khodadadi 2003; Xu, Patterson & Lei
2006, 2008, 2009).

It is expected that a conducting fin attached to the sidewall increases the surface
area of heat transfer and, in turn, increases the overall heat transfer through the cavity
(see e.g. Frederick & Valencia 1989; Nag, Sarkar & Sastri 1994; Shi & Khodadadi
2003; Tasnim & Collins 2004; Bilgen 2005). On the other hand, an adiabatic fin
may also have a significant impact on natural convection flows in a differentially
heated cavity and the heat transfer rate through the cavity (see e.g. Shakerin, Bohn &
Loehrke 1988; Nag, Sarkar & Sastri 1993). In the previous studies (e.g. Bilgen 2005),
the fin thickness is usually considered to be negligibly small (a so-called thin fin)
in comparison with the fin length, and it has also been demonstrated that natural
convection flows in the cavity are sensitive to the fin length. Secondary circulations
may be observed if the fin length is sufficiently large, and multiple circulations induced
by the fin arise at the upper and lower base corners of the fin (Nag et al. 1993).

A survey of relevant literature reveals that steady natural convection induced by
a fin on the sidewall of a differentially heated cavity has been paid considerable
attention, but few studies have focused on the transient natural convection flows
around the fin. In many applications, however, the thermal forcing is unsteady and
the transient flow response is also of interest. In order to investigate the effect of
an adiabatic fin on the transient natural convection flows, the authors have recently
carried out a series of experimental measurements and numerical simulations of the
transient natural convection flows around an adiabatic fin (see Xu et al. 2006, 2008,
2009). Both the experimental and numerical results of Xu et al. (2008, 2009) show that,
following sudden heating of the sidewall, the early-stage vertical thermal boundary
layer flow is separated into two distinct sections if the fin length is greater than the
thickness of the vertical thermal boundary layer. The fin and the ceiling of the cavity
both force horizontal intrusions. After the lower intrusion under the fin bypasses
the fin, a starting plume forms, which ascends until it strikes the intrusion under the
ceiling. As time increases further, the starting plume is eventually drawn into the
vertical thermal boundary layer downstream of the fin, and a horizontal thermal
flow forms above the fin with an adverse temperature gradient (which is potentially
unstable, see Xu et al. 2009).

It has been demonstrated that an adiabatic fin may change the transient
development of the thermal boundary layer flows adjacent to the sidewall and
even trigger instability, significantly enhancing the heat transfer rate through the
sidewall (by up to 23% in the early stage of the flow development for a Rayleigh
number of the order of 109; refer to Xu et al. 2009). Therefore, it is of fundamental
significance to quantify the transient natural convection flows in order to obtain
further insights into their dynamic mechanisms in different flow regimes. In this
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Figure 1. Schematic of the physical domain and boundary conditions.

paper, a scaling analysis of the early transient natural convection flows around an
adiabatic fin is described, following procedures outlined in the previous studies of
the transient natural convection flows in a rectangular cavity (Patterson & Imberger
1980; Lin, Armfield & Patterson 2007), in an attic space (Poulikakos & Bejan 1983)
and in a wedge-shaped triangular cavity (Lei & Patterson 2002). Note that the
dynamic mechanisms of the early transient natural convection flows around the fin
are the focus of this study, rather than the steady state that evolves over a long time
scale. Corresponding numerical simulations are used to validate the scaling relations
obtained from the scaling analysis.

In the remainder of this paper, a scaling analysis of the transient natural convection
flows around the fin with a Prandtl number larger than unity is described in § 2. The
numerical procedures are described in § 3. Validation of the scaling relations and
further discussion are given in § 4, and the conclusions are summarized in § 5.

2. Scaling relations of the transient natural convection flows around a thin fin
The comparisons between the experiment and corresponding two-dimensional

numerical simulations reported by Xu et al. (2009) show that the two-dimensional
laminar model characterizes well the early transient flows around the fin for a
Rayleigh number up to an order of 109. Accordingly, based on the experimental
model adopted by Xu et al. (2008, 2009), we consider a two-dimensional cavity of
H (height) × L (length) with an adiabatic thin fin (length l � thickness d) placed at
the mid height of the sidewall (the height of the cavity under the fin is h = H/2). The
top and bottom walls of the cavity and the fin surfaces are assumed to be adiabatic.
The boundary conditions are illustrated in figure 1. Initially the contained fluid is
isothermal at a temperature T0 and stationary. At initiation, the temperature of the
finned sidewall is suddenly raised by �T and that of the other sidewall is lowered by
�T . The subsequent development of the working fluid in the cavity is governed by the
following Navier–Stokes and energy equations with the Boussinesq approximation:
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where x and y are the horizontal and vertical coordinates with origin at the centre
of the cavity, t is the time, T is the temperature, p is the pressure, u and v are the
velocity components in the x and y directions, g is the acceleration due to gravity, β

is the coefficient of thermal expansion, ρ is the density, κ is the thermal diffusivity
and ν is the kinematic viscosity.

It is well known that natural convection flows in a differentially heated cavity
without a fin are determined by three governing dimensionless parameters (Bachelor
1954): the Rayleigh number (Ra), the Prandtl number (Pr) and the aspect ratio (A),
defined respectively as follows:

Ra =
gβ�T H 3

νκ
, P r =

ν

κ
, A =

H

L
. (5)

For the present case with a fin on the sidewall, the fin length is also a governing
parameter, which will be confirmed in the following section. Furthermore, a Rayleigh
number (Rah) is also adopted, which is defined in terms of the half-height of the
heated wall (h = H/2) as follows:

Rah =
gβ�T h3

νκ
. (6)

It is worth noting that the dynamic mechanisms and scaling relations of the
transient thermal boundary layer flow in a differentially heated cavity are different
between the cases with Pr > 1 and Pr < 1 (see e.g. Patterson & Imberger 1980; Lin &
Armfield 2005). In the subsequent scaling analysis and numerical simulations, only
working fluids with Pr > 1 are considered.

For the purpose of illustrating the transient natural convection flows around the
fin, a typical numerically calculated flow development as depicted by isotherms is
presented in figure 2, in which Rah = 2.29 × 108, Pr = 100, and the time has been
non-dimensionalized by h2/(κRa

1/2
h ). Clearly, an important feature of the transient

natural convection flows in the presence of the fin is the formation and evolution
of two intrusions: one underneath the ceiling and the other underneath the fin, as
seen in figure 2(a). The intrusions and the vertical thermal boundary layers upstream
and downstream of the fin are identical at the very early stage (also refer to the
experimental visualizations of Xu et al. 2008). However, the similarity between the
flows upstream and downstream of the fin disappears after the lower intrusion
front bypasses the fin, as shown in figure 2(b). At this time, a starting plume has
formed, and the head of the plume rises towards the ceiling. With the passage of
time, the plume front ascends until it strikes and is entrained into the intrusion
under the ceiling (Xu et al. 2008). The subsequent plume flow is drawn towards
the vertical thermal boundary layer downstream of the fin, as shown in figure 2(c).
Indeed, the thermal flow above the fin becomes increasingly closer to the fin as
time increases further; that is, a horizontal fluid layer above the fin eventually forms
(figure 2d). In what follows, a scaling analysis is carried out based on the governing
equations (1)–(4) in order to quantify the transient flows around the fin until the stage
depicted in figure 2(d).

2.1. Vertical thermal boundary layer with a fin

In this section, following the arguments for the case without a fin by Patterson &
Imberger (1980) and Lin et al. (2009), we will obtain the major scaling relations of
the thermal boundary layer upstream of the fin with a brief discussion of possible
dynamics or energy balances.
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Figure 2. Typical transient natural convection flows around the fin at different times for
Rah = 2.29 × 108 and Pr = 100 (isotherms with a contour interval of 0.25).

Following sudden heating, heat conduction through the sidewall results in a growing
thermal boundary layer adjacent to the finned sidewall, which is separated into two
sections by the fin (figure 2a). For both sections, the order of the unsteady term in the
energy equation (4) is O(�T/t); the order of the advection term is O(vT �T/h); and
the order of the conduction term is O(κ�T/δ2

T ), where δT and vT are the thickness
and velocity scales of the thermal boundary layer (figure 3). Therefore, the ratio of
the advection term to the unsteady term is O(vT t/h). Note that since the temperature
of the fluid entrained into the upstream thermal boundary layer is T0 (the initial
temperature of the interior fluid) and that discharged out from the thermal boundary
layer is T0 + �T (the same as the temperature of the sidewall), the temperature
difference scale of the thermal boundary layer is �T . For a sufficiently small time t,
vT t <h and thus the advection term is insignificant compared with the unsteady term.
The initial energy balance is therefore between the conduction term and the unsteady
term, which yields a thickness scale of the thermal boundary layer (see Patterson &
Imberger 1980)

δT ∼ (κt)1/2. (7)

For the vertical thermal boundary layer on either side of the fin, the order of the
unsteady term in (3) is O(vT /t); the order of the advection term is O(v2

T /h); the order
of the viscous term is O(νvT /δ2

T ); and the buoyancy term is O(gβ�T ). The ratio of the
advection term to the unsteady term of (3) is O(vT t/h). Similar to the above argument
for the initial energy balance, for a sufficiently small time the advection term of (3)
is also insignificant compared with the unsteady term because vT t < h. Furthermore,
since the ratio of the viscous term to the unsteady term is O(νt/δ2

T ) ∼ Pr , for Pr > 1
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Figure 3. Schematic of the temperature and velocity profiles of a fluid boundary layer
adjacent to a vertical thermal wall.

the unsteady term is also insignificant compared with the viscous term. Therefore,
within a sufficiently small time for Pr > 1, both the unsteady and advection terms
of (3) are negligibly small in comparison with the other terms, and the balance is
between the viscous term and the buoyancy term.

The fluid boundary layer adjacent to a vertical thermal wall includes three sub-
layers (see Lin et al. 2009): an inner viscous layer (δi), a viscous layer (δν) and the
above-mentioned thermal layer (δT ), which are illustrated in figure 3. The balance
between the viscous term and the buoyancy term for a sufficiently small time yields
a velocity scale for the inner viscous layer (see Lin et al. 2009):

vT ∼ gβ�T

ν
δ2
i . (8)

For the fluid layer within the thermal boundary layer but outside the inner viscous
layer, the balance of (3) is still between the buoyancy term and the viscous term,
which may be integrated and expressed as

0 ∼ ν

(
∂v

∂x

)δT

δi

+ gβ

∫ δT

δi

T dx. (9)

The argument of Lin et al. (2009) suggested that (∂v/∂x)δi
= 0 since the maximum

velocity appears at x = δi, (∂v/∂x)δT
∼ vT /(δν − δi), and gβ

∫ δT

δi
T dx ∼ gβ�T (δT − δi).

Therefore, we may obtain a velocity scale as follows:

vT ∼ gβ�T

ν
(δT − δi)(δν − δi). (10)

Considering (7), (8) and (10) as well as the thickness of the viscous boundary layer
δν ∼ (νt)1/2 (see Patterson & Imberger 1980), a thickness scale and an unsteady velocity
scale for the inner viscous layer may be obtained as follows:

δi ∼ δT

1 + Pr−1/2
, (11a)

vT ∼ κ2Rah

h3
(
1 + Pr−1/2

)2
t. (11b)

The scaling relation (11a) shows that the thickness of the thermal boundary layer
approaches that of the inner viscous layer as the Prandtl number increases. The
scaling relation (10) is not applicable for Pr → ∞ because in this case the assumption
of three sub-layers does not hold.
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It is clear that with the passage of time, the velocity increases, as specified by
(11b). As a result, more heat is convected away and thus the advection term of the
energy equation (4) becomes increasingly significant until the heat convected away
ultimately balances the heat conducted from the sidewall. Using (7) and (11b), the
balance between the advection term and the conduction term in (4) results in a time
scale (ts):

ts ∼
h2

(
1 + Pr−1/2

)
κRa

1/2
h

, (12)

after which the thermal boundary layer enters a steady state. Substituting (12) into
(7) and (11b), we obtain the thickness and velocity scales of the thermal boundary
layer on either side of the fin at the boundary layer steady state

δT s ∼
h
(
1 + Pr−1/2

)1/2

Ra
1/4
h

, (13a)

vT s ∼ κRa
1/2
h

h
(
1 + Pr−1/2

) . (13b)

2.2. Lower intrusion under the fin

Figure 2(a) shows that due to the presence of the fin, a lower intrusion, a typical
horizontal gravity flow, forms underneath the fin. A corresponding intrusion forms
under the ceiling of the cavity. Scaling analyses of horizontal gravity flows have been
performed by Patterson & Imberger (1980) and Didden & Maxworthy (1982), in
which the flow rate Q to the intrusion is assumed to be constant. Huppert (1982) and
Maxworthy (1983) investigated a horizontal gravity flow with an unsteady flow rate
in which the total volume of buoyant fluid in the horizontal gravity flow increases
with time according to tα (where α is a constant). In the present case, the lower
intrusion is more complex than those considered in the previous studies. This is
because the thickness and velocity of the thermal boundary layer upstream of the
fin (which discharges into the horizontal lower intrusion) and upstream of the ceiling
(which discharges into the horizontal intrusion beneath the ceiling) initially increase
with time and then approach a constant value, as specified in (7) and (11)–(13).
Consequently, neglecting entrainment, the volumetric flow rate to the intrusion may
be expressed as

Q ∼ uI δI ∼ vT δT ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ5/2Rah

h3
(
1 + Pr−1/2

)2
t3/2, t < ts,

κRa
1/4
h(

1 + Pr−1/2
)1/2

, t > ts,

(14)

where uI and δI denote the velocity and the thickness of the two intrusions,
respectively.

The results of Huppert (1982) and Maxworthy (1983) show that, for a two-
dimensional intrusion, if α > 7/4 the intrusion is initially governed by a buoyancy-
viscosity balance, then by a buoyancy-inertia balance. For the present case, the
time power of the flow rate (14) is 3/2 for t < ts , and therefore the time power
of the total volume of the lower intrusion (∼ Qt) is α = 5/2( > 7/4), and thus the
buoyancy-viscous balance initially applies. The transition from the buoyancy-viscous
to buoyancy-inertial flow regimes occurs at a time scale tν (at which the ratio of the
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viscous to inertial term is unity and the two terms are comparable) given by (also see
Huppert 1982)

tν ∼
h2Pr5/3

(
1 + Pr−1/2

)8/3

κRa
2/3
h

. (15)

The above description of the intrusion applies so long as the flow rate to the
intrusion increases with time until t ∼ ts , where ts is given by (12). Thus, if tν < ts ,
the intrusion will be initially governed by a buoyancy-viscous balance, followed by
a buoyancy-inertial balance. For the buoyancy-viscous flow regime, by following the
argument of Huppert (1982) or directly by considering (14) and the balance between
the buoyancy-induced horizontal pressure gradient (gβ�T δI/uI t; also see Patterson &
Imberger 1980) and the viscous term (νuI/δ

2
I ) in (2), the thickness and velocity scales

of the lower intrusion may be obtained as

δIν ∼
(

νtQ2

gβ�T

)1/5

∼ κ4/5Ra
1/5
h t4/5

h3/5
(
1 + Pr−1/2

)4/5
, (16a)

uIν ∼ Q

δIν

∼ κ17/10Ra
4/5
h t7/10

h12/5
(
1 + Pr−1/2

)6/5
. (16b)

Furthermore, once the transition to the buoyancy-inertial flow regime occurs, the
thickness and velocity scales under the balance between the buoyancy-induced
horizontal pressure gradient (gβ�T δI/(uI t)) and the inertial term (uI/t) may be
expressed as

δIg ∼ κRa
1/3
h t

hP r1/3
(
1 + Pr−1/2

)4/3
, (17a)

uIg ∼ κ3/2Pr1/3Ra
2/3
h t1/2

h2
(
1 + Pr−1/2

)2/3
. (17b)

The transition from the buoyancy-viscous flow regime to the buoyancy-inertial
flow regime occurs only if tν < ts . A comparison of these two time scales (tν and ts)
shows that for Rah > Pr10(1 + Pr−1/2)10, then tν < ts; otherwise ts < tν . Accordingly,
the scaling analysis of the lower intrusion in what follows is described for the two
cases of Rah >Pr10(1 + Pr−1/2)10 and Rah <Pr10(1 + Pr−1/2)10, respectively.

For the case of Rah >Pr10(1 + Pr−1/2)10, when t < ts , the development of the lower
intrusion with an unsteady flow rate is described by (15)–(17). When t > ts , the flow
rate to the lower intrusion is constant given by (14). Accordingly, substituting (12)
into (17a) and (17b), the steady thickness and velocity scales may be expressed as

δIgs ∼ h

P r1/3
(
1 + Pr−1/2

)1/3
Ra

1/6
h

, (18a)

uIgs ∼ κP r1/3Ra
5/12
h

h
(
1 + Pr−1/2

)1/6
. (18b)

With the passage of time, the viscous term of the lower intrusion with a steady flow
rate becomes increasingly important, until the time at which the viscous and inertial
terms balance, yielding a time scale

tg ∼ h2

κP r5/3
(
1 + Pr−1/2

)2/3
Ra

1/3
h

. (19)



Transient natural convection flows around a thin fin 269

If t � tg , the balance is between the buoyancy-induced horizontal pressure gradient
and the viscous term in (2) again, yielding a thickness scale and a velocity scale

δIνs ∼ κ1/5h3/5(
1 + Pr−1/2

)1/5
Ra

1/10
h

t1/5, (20a)

uIνs ∼ κ4/5Ra
7/20
h

h3/5
(
1 + Pr−1/2

)3/10
t−1/5. (20b)

The scale (20b) indicates that the velocity of the lower intrusion at this stage reduces
with time although the balance is still between the buoyancy-induced horizontal
pressure gradient and viscous terms.

For the purpose of illustrating the evolution of the flow regimes with time, figure 4(a)
presents a schematic of the dependence of the velocity on time under different
flow regimes for a typical case of Rah >Pr10(1 + Pr−1/2)10 in which the velocity is
calculated using (16b), (17b), (18b) and (20b) respectively. Note that the velocity and
the time in figure 4 have been non-dimensionalized by (κRa

1/2
h )/h and h2/(κRa

1/2
h ),

respectively.
For the case of Rah < Pr10(1 + Pr−1/2)10, since ts < tν , the transition from the

buoyancy-viscous flow regime to the buoyancy-inertial flow regime does not occur. For
t > ts , the flow is still governed by a buoyancy-viscous balance. The buoyancy-viscous
flow regimes for the case of Rah <Pr10(1 + Pr−1/2)10 are illustrated in figure 4(b).

It is worth noting that for the case of Rah <Pr10(1 + Pr−1/2)10, there does not exist
a buoyancy-inertial flow regime. Therefore, Rah ∼ Pr10(1 + Pr−1/2)10 may be regarded
as a critical value determining whether the transition to the buoyancy-inertial flow
regime would occur, as seen in figure 4(c). That is, the buoyancy-inertial flow regime
occurs only on the left side of the curve of Rah =Pr10(1 + Pr−1/2)10 in the Rah − Pr

plane.
The scaling relations (12), (15) and (19) specify the times at which transitions of

the flow regimes occur. According to these time scales, we may further predict the
distances over which each flow regime applies and thus identifies the possible flow
regimes of the lower intrusion for different fin lengths.

For Rah > Pr10(1 + Pr−1/2)10, since tν < ts , considering the velocity scale (16b) within
the time scale tν , we obtain the distance (lν) over which the buoyancy-viscous flow
regime applies as

lν ∼ uIνt |t∼tν ∼
hP r17/6

(
1 + Pr−1/2

)10/3

Ra
1/3
h

. (21)

The total distance (lgs) through which the lower intrusion front with an unsteady flow
rate penetrates may be estimated by

lgs ∼ uIgst |t∼ts ∼
hP r1/3

(
1 + Pr−1/2

)5/6

Ra
1/12
h

. (22)

Furthermore, the distance (lgsg) at which the transition from the buoyancy-inertial
flow regime to the buoyancy-viscous flow regime with a steady flow rate occurs may
be given by

lgsg ∼ uIgst |t∼tg ∼ hRa
1/12
h

P r4/3
(
1 + Pr−1/2

)5/6
. (23)
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Figure 4. Possible buoyancy-inertial and buoyancy-viscous intrusion flow regimes. (a) Velocity
against time for the case of Rah =109 and Pr = 4. (b) Velocity against time for the case of
Rah = 109 and Pr = 100. (c) Possible buoyancy-inertial and buoyancy-viscous intrusion flow
regimes for different Rayleigh and Prandtl numbers (the squares show the Rayleigh and
Prandtl numbers of direct numerical simulations in this paper).

In summary, for different fin lengths in the case of Rah >Pr10(1 + Pr−1/2)10, the
flow regimes of the lower intrusion may be described in terms of the fin length as
follows:

(i) l < lν . The lower intrusion front underneath the fin travels under a buoyancy-
viscous balance with an unsteady flow rate.

(ii) lν < l < lgs . The lower intrusion front initially travels under the buoyancy-viscous
balance and then under the buoyancy-inertial balance, and the flow rate is unsteady
until the lower intrusion bypasses the fin.
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(iii) lgs < l < lgsg . The transition of the lower intrusion from the buoyancy-viscous
flow regime to the buoyancy-inertial flow regime occurs similar to the case of
lν < l < lgs , but the flow rate is steady when the lower intrusion bypasses the fin.

(iv) l > lgsg . The transitions of the lower intrusion from the buoyancy-viscous flow
regime to the buoyancy-inertial flow regime with an unsteady flow rate and then from
the buoyancy-inertial flow regime to the buoyancy-viscous flow regime with a steady
flow rate are expected. When the lower intrusion bypasses the fin, the flow rate is
steady.

For the case of Rah <Pr10(1 + Pr−1/2)10, since ts < tν , the lower intrusion front
travels under a buoyancy-viscous balance with an unsteady flow rate. Using (16b),
the distance through which the lower intrusion front with an unsteady flow rate
penetrates may be expressed as

lνs ∼ uIνt |t∼ts ∼
h
(
1 + Pr−1/2

)1/2

Ra
1/20
h

. (24)

Therefore, for l < lνs , the lower intrusion travels under the buoyancy-viscous balance,
and the flow rate is unsteady when the lower intrusion bypasses the fin. For l < lνs ,
the lower intrusion first travels under the buoyancy-viscous balance with an unsteady
flow rate, and then the flow rate becomes steady when the lower intrusion travels
beyond lνs .

2.3. Starting plume originating from the lower intrusion

When the lower intrusion bypasses the fin, it may be considered as a horizontal jet
with an initial horizontal velocity. If the exiting horizontal velocity is low (which was
confirmed by the numerical and experimental results of Xu et al. 2008, 2009), the
exiting lower intrusion quickly ascends due to buoyancy effects and a starting plume
forms, as illustrated in figure 2(b). Studies of starting plumes have been extensively
reported (see e.g. Turner 1962; Shlien 1976; List 1982; Campbell, Griffiths & Hill
1989; Moses, Zocchi & Libchaber 1993; Kaminski & Jaupart 2003). Most of the
previous studies focused on a starting plume generated by a point or a line heating
source, and the starting plume with a steady flow rate has been given much attention
(see Kaminski & Jaupart 2003). In this section, we will consider a starting plume
originating from the lower intrusion bypassing the fin (a horizontal jet), possibly with
either a steady or unsteady flow rate.

The flow rate to the starting plume here is unsteady if the fin length is sufficiently
small, (i.e. l < lgs or lνs , see (22) and (24)). Accordingly, we assume that, in general,
the flow rate to the plume varies with time and has a power-law function of time as
follows:

Q ∼ vP δP ∼ qct
γ , (25)

where vP and δP are the velocity and the thickness of the starting plume, qc is a
coefficient, t is the time measured from the formation of the starting plume and γ is
a non-negative constant.

The horizontal component of the plume velocity is small compared with the vertical
velocity component (also see Xu et al. 2008, 2009). Therefore, we consider only the
vertical momentum equation (3). In the starting plume, the order of the inertial
term of (3) is O(vP /t), the order of the viscous term O(νvP /δ2

P ) and the buoyancy
term O(gβ�T ). Using (25), the balance between the viscous term and the buoyancy
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term in (3) yields the thickness and velocity scales of the starting plume

δPν ∼
(

νQ

gβ�T

)1/3

∼
(

νqct
γ

gβ�T

)1/3

, (26a)

vPν ∼ gβ�T

ν

(
νQ

gβ�T

)2/3

∼
(

gβ�T

ν

)1/3

q2/3
c t2γ /3. (26b)

On the other hand, the balance between the inertial term and the buoyancy term in
(3) yields the thickness and velocity scales under the buoyancy-inertial balance:

δPg ∼ qct
γ −1

gβ�T
. (27a)

vPg ∼ gβ�T t, (27b)

Based on (26a) and (27a), the ratio of the inertial term to the viscous term may be
expressed as

δ2
Pν

νt
∼

(
q2

c t
2γ −3

ν(gβ�T )2

)1/3

, (28a)

δ2
Pg

νt
∼ q2

c t
2γ −3

ν(gβ�T )2
. (28b)

If the ratio of the inertial term to the viscous term is of the order of unity, for either
(28a) or (28b), we obtain a time scale

tP ν ∼
(

ν1/2gβ�T

qc

)1/(γ −3/2)

, (29)

where tP ν is a time scale at which the viscous and inertial terms are of equal
significance.

Clearly, for γ >γc = 3/2, if t � tP ν , the ratio of the inertial term to the viscous term
(either (28a) or (28b)) is much smaller than unity; that is, the buoyancy-viscous flow
regime initially dominates the starting plume with the thickness and velocity scales
specified by (26a) and (26b). If t � tP ν , the ratio of the inertial term to the viscous
term is much larger than unity and the buoyancy-inertial flow regime applies to the
starting plume with the thickness and velocity scales specified by (27a) and (27b). On
the other hand, for γ <γc, if t � tP ν , the ratio of the inertial term to the viscous term
(either (28a) or (28b)) is much larger than unity, and thus the starting plume under
a buoyancy-inertial balance initially ascends with the thickness and velocity scales
given by (27a) and (27b). However, if t � tP ν , the ratio of the inertial term to the
viscous term is much smaller than unity and the starting plume is dominated by a
buoyancy-viscous balance with the thickness and the velocity specified by (26a) and
(26b), respectively.

It is interesting to note that, for the case of γ = γc, the dynamic balance is
independent of time (see (28a) and (28b)); that is, if qc � ν1/2gβ�T , the ratio of
the inertial term to the viscous term is much less than unity and, thus, the balance
is always between the buoyancy term and the viscous term. On the other hand, if
qc � ν1/2gβ�T , a buoyancy-inertial balance always dominates the starting plume. For
qc ∼ ν1/2gβ�T , the inertial and viscous terms are comparable.

For the starting plume bypassing the fin, we first consider a simple case
of l > lgs or lνs; that is, the flow rate to the starting plume is constant,
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Q ∼ qc ∼ κRa
1/4
h /(1 + Pr−1/2)1/2 (also see (14)) and γ = 0. Substituting qc and γ into

(29), a time scale is given by

tP ν ∼ h2

κP r
(
1 + Pr−1/2

)1/3
Ra

1/2
h

. (30)

As previously discussed, for the case of γ (= 0) <γc, the balance is mainly
between the buoyancy term and the inertial term if t � tP ν . Hence, recognizing
qc ∼ κRa

1/4
h /(1 + Pr−1/2)1/2, γ = 0 in (27a) and (27b), the thickness and velocity scales

of the starting plume are obtained as follows:

δPg ∼ h3

κP r
(
1 + Pr−1/2

)1/2
Ra

3/4
h t

, (31a)

vPg ∼ κ2PrRaht

h3
. (31b)

When t � tP ν , the buoyancy term balances the viscous term in (3), as previously
discussed. Substituting qc ∼ κRa

1/4
h /(1 + Pr−1/2)1/2 and γ = 0 into (26a) and (26b), we

obtain the steady thickness and velocity scales

δPν ∼ h(
1 + Pr−1/2

)1/6
Ra

1/4
h

, (32a)

vPν ∼ κRa
1/2
h

h
(
1 + Pr−1/2

)1/3
. (32b)

We may also consider a starting plume bypassing the fin with an unsteady flow
rate (l < lgs or lνs). When t < ts , according to the scaling relation (14), the time power
of the unsteady flow rate is 3/2 and qc ∼ κ5/2Rah/(h

3(1 + Pr−1/2)2) < ν1/2gβ�T (note
that Pr > 1 in this study); that is, the balance is between the viscous term and the
buoyancy term. Therefore, considering Q ∼ κ5/2Raht

3/2/(h3(1 + Pr−1/2)2), this balance
yields the thickness and velocity scales under the buoyancy-viscous balance

δPν ∼ κ1/2t1/2

(1 + Pr−1/2)2/3
, (33a)

vPν ∼ κ2Raht

h3(1 + Pr−1/2)4/3
. (33b)

Note that since t here is measured from the initiation of sudden heating in the flow
rate calculation Q ∼ κ5/2Raht

3/2/(h3(1 + Pr−1/2)2), t in (33a) and (33b) also needs to
be measured from the initiation of sudden heating.

When the flow rate is steady, we may obtain the same velocity and thickness scales
as (31)–(32). That is, the balance is between the inertial term and the buoyancy term
for t � tPυ and the starting plume ascends with the thickness and the velocity given by
(31a) and (31b); and the starting plume is dominated by a buoyancy-viscous balance
for t � tP ν and has a steady velocity and thickness specified by (32a) and (32b).

2.4. Horizontal thermal flow above the fin

In the early stage, since the thermal flow above the fin is complex and has both
horizontal and vertical components of the velocity (see figure 2c), a detailed scaling
analysis of the horizontal thermal flow above the fin is not possible. Here, we consider
only the case with a fully developed thermal flow above the fin; that is, the thermal
flow above the fin is approximately horizontal (figure 2d) and has a steady flow rate
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expressed by (see (14))

Q ∼ uAδA ∼ κRa
1/4
h(

1 + Pr−1/2
)1/2

, (34)

where uA and δA are the velocity and thickness of the horizontal thermal flow above
the fin, arising from the steady state of the thermal boundary layer upstream of the
fin.

The horizontal thermal flow above the fin is driven by a buoyancy-induced
horizontal pressure gradient. In the horizontal thermal layer above the fin, the order
of the buoyancy-induced pressure is O(ρgβ�T δA) (see Patterson & Imberger 1980).
The length scale of the flow above the fin is l (the fin length), and the scale of the
buoyancy-induced horizontal pressure gradient may be expressed by

1

ρ

∂p

∂x
∼ gβ�T

δA

l
. (35)

For the same flow, the order of the advection term in (2) is O(u2
A/l) and the order

of the viscous term O(νuA/δ2
A). Using (34), the balance between the viscous term

and the buoyancy-induced horizontal pressure gradient (35) yields the thickness and
velocity scales of the thermal flow above the fin:

δAν ∼ l1/4h3/4(
1 + Pr−1/2

)1/8
Ra

3/16
h

, (36a)

uAν ∼ κRa
7/16
h

l1/4h3/4
(
1 + Pr−1/2

)3/8
. (36b)

Furthermore, the balance between the advection term and the buoyancy-induced
horizontal pressure gradient yields thickness and velocity scales under the buoyancy-
advection balance

δAg ∼ h

P r1/3
(
1 + Pr−1/2

)1/3
Ra

1/6
h

, (37a)

uAg ∼ κP r1/3Ra
5/12
h

h
(
1 + Pr−1/2

)1/6
. (37b)

Based on (36a) and (36b) or (37a) and (37b), the ratio of the advection term to the
viscous term O(uAδ2

A/(νl)) may be expressed as

uAνδ
2
Aν

νl
∼

(
hRa

1/12
h

lP r4/3
(
1 + Pr−1/2

)5/6

)3/4

, (38a)

uAgδ
2
Ag

νl
∼ hRa

1/12
h

lP r4/3
(
1 + Pr−1/2

)5/6
. (38b)

Assuming that the ratio of the advection term to the viscous term is unity, for either
(38a) or (38b), we may obtain a critical fin length scale:

lA ∼ hRa
1/12
h

P r4/3
(
1 + Pr−1/2

)5/6
. (39)

Clearly, there is a transition from the buoyancy-inertial flow regime to the buoyancy-
viscous flow regime at l ∼ lA. That is, if the fin is sufficiently short (l � lA), the
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ratio of the advection term to the viscous term is much larger than unity (refer to
either (38a) or (38b)) and, thus, the thermal flow above the fin is governed by a
buoyancy-advection balance with its velocity and thickness specified by (37a) and
(37b). However, if the fin is sufficiently long (l � lA), the ratio of the advection term
to the viscous term is much smaller than unity and, thus, the thermal flow above the
fin travels under a buoyancy-viscous balance with the thickness and the velocity given
by (36a) and (36b), respectively.

3. Numerical procedures
For convenience, the variables in the governing equations are non-dimensionalized

using the following scales: x, y ∼ h; t ∼ h2/(kRa
1/2
h ); (T − T0) ∼ �T ; u, v ∼ κRa

1/2
h /h;

and ρ−1∂p/∂x, ρ−1∂p/∂y ∼ κ2Rah/h3. Accordingly, a non-dimensional form of the
governing equations is written as

∂u

∂x
+

∂v

∂y
= 0, (40)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ Pr

(
∂2u

∂x2
+

∂2u

∂y2

)
, (41)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ Pr

(
∂2v

∂x2
+

∂2v

∂y2

)
+ PrRahT , (42)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

∂2T

∂x2
+

∂2T

∂y2
. (43)

All interior boundaries of the computational domain are assumed non-slip, and the
fin and the top and bottom walls are assumed adiabatic, as indicated in § 2. Initially,
the working fluid is at rest and isothermal, and at t = 0 the temperature of the finned
sidewall is raised to 1 and that of the opposite sidewall is lowered to −1.

The governing equations are implicitly solved using a finite-volume SIMPLE
scheme. Second derivatives and linear first derivatives are approximated by a second-
order centre-differencing scheme. The advection terms are discretized using a QUICK
scheme (see Patterson & Armfield 1990). The time integration is by a second-order
backward difference method. The discretized equations are iterated with specified
under-relaxation factors.

Considering the special features of natural convection flows in a differentially heated
cavity, a hybrid grid system is constructed with finer non-uniform grids concentrated
in the proximity of all wall boundaries and a relatively coarse uniform grid in the
interior region. In the wall boundary regions, the grid expands at a constant rate from
the wall towards the interior edges of these regions. Similarly, the vicinity of the fin
is finely meshed in order to accurately capture the features of the transient natural
convection flows around the fin.

Grid dependence tests were conducted on a coarse grid of 163 × 333, a medium
grid of 211 × 538 and a fine grid of 259 × 743, respectively. Note that since the
computational domain around the fin is finely meshed in order to resolve the local
flows around the fin, the resulting grids adopted here are much finer than what was
recommended by Gelfgat (2007) for the flows in a cavity without a fin. Furthermore, in
order to evaluate the effect of the three grid systems on the transient natural convection
flows adjacent to the finned sidewall, a representative parameter is calculated from
the numerical results: the volumetric flow rate of the vertical thermal boundary layer,
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Figure 5. Time series of the calculated flow rate for Rah = 109 and Pr = 6.63 using different
grid systems and time steps (where �t is the time step).

which is given by (also see Lei & Patterson 2002)

Q =

∫ xw

xe

v dx, (44)

where Q is the non-dimensional volumetric flow across a horizontal sectional plane at
the location of the maximum steady-state velocity in the vertical thermal boundary
layer upstream of the fin; xw and xe are the x-coordinates of the sidewall and the
interior edge of the vertical thermal boundary layer, which is defined as the location
at which T = 0.01. The volumetric flow rate Q is non-dimensionalized using κRa

1/2
h .

Grid dependence tests were carried out for the case of the highest Rayleigh number
(Rah = 109 and Pr = 6.63) in this study. Figure 5(a) shows time series of the volumetric
flow rates calculated using the three grid systems. The numerical solutions with the two
finer grid systems are consistent with a maximum variation of 2.8% in the transitional
stage. Furthermore, the maximum variation between the flow rates calculated by the
finest grid system and the coarsest grid system is 6.7%. Since this study is focused on
the basic flows around the fin rather than the details of the LEE, either of the two
finer grid systems may be used with a good accuracy in comparison with the coarsest
grid system. In consideration of the computing time, the grid system of 211 (H) × 538
(L), with a grid inflation factor of 1.04 towards the centre of the domain in both the
horizontal and vertical boundary zones, is adopted.

As indicated in figure 5(a), the development of the vertical thermal boundary layer
includes an initial growth stage, a transitional stage and a steady stage (also see Xu
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et al. 2008). In particular, in the transitional stage, the LEE of the vertical thermal
boundary layer is clear (refer to Patterson et al. 2002 for more details about the
LEE). Note that the steady stage here refers only to a state of the boundary layer
adjacent to the finned sidewall, which occurs after the passage of the LEE and
before the intrusion from the opposing sidewall strikes the finned sidewall. At this
stage, the interior fluid remains isothermal. Previous studies (see e.g. Xu et al. 2009)
show that after the intrusion from the opposing sidewall strikes the finned sidewall,
the cavity flows eventually approach a steady state with a stratified interior fluid.
Since different flow mechanisms are involved in the cavity flows with isothermal and
stratified interior fluids, the latter steady state (for the cavity flows) is not considered
in the present scaling analysis.

A time step dependence test was conducted with dimensionless time steps of 0.066,
0.033 and 0.0165, respectively, and the results are shown in figure 5(b). For the three
cases with different time steps, there is no discernible difference in the calculated
flow rates at the initial growth stage and the steady stage, but discernible variations
can be seen in the transitional stage (LEE). This indicates that the basic flow is
independent of the tested time steps except for the wave properties associated with
the LEE. As mentioned above, this study focuses on the basic flow regimes of the
natural convection flows around the fin rather than resolving the details of the LEE,
the time step of 0.033 is adopted in consideration of the computing time and the
numerical accuracy.

4. Numerical results and discussion
Based on the experimental model described by Xu et al. (2008), we adopted a fixed

aspect ratio of the cavity (A= 0.24) in the present numerical simulations. Furthermore,
the geometric dimensions of the fin are also fixed (here the fin length l =h/3 and the
fin thickness d = h/60). Since unstable flows with strong oscillations are expected at
very high Rayleigh numbers (refer to Janssen & Henkes 1995; Armfield & Janssen
1996; Janssen & Armfield 1996) but cannot be considered in the present scaling
analysis, the Rayleigh numbers adopted in the present numerical simulations for the
scaling validation are limited to Rah = 109. Moreover, cases with a wide range of
Prandtl numbers from Pr = 2 to Pr = 100 are calculated here. The parameter values
for the 32 numerical simulation runs presented in this paper are listed in table 1 and
shown in figure 4(c).

4.1. Demonstration of transient flow structures

The lower intrusion is a representative transient flow structure of the natural
convection flows around the fin. The scaling analysis in § 2.2 indicates that for
different parameter settings the lower intrusion could travel under different flow
regimes. Figures 6(a) and 6(b) present isotherms and streamlines adjacent to the
finned sidewall for a low Rayleigh number case with Rah = 106 and Pr = 100 (here
Rah < Pr10(1 + Pr−1/2)10). The flow time is 1.1, the same order as ts given by (12).
Hence, the intrusion with a steady flow rate travels under the buoyancy-viscous
flow regime. For the case presented in figures 6(c) and 6(d), in which Rah =109 and
Pr = 2 so that Rah >Pr10(1 + Pr−1/2)10, the flow time is 2.6, larger than ts (ts ∼ 1.7
for this case) and smaller than tg (tg ∼ 7 for this case), and the intrusion with a steady
flow rate propagates under a buoyancy-inertial balance. Clearly, the intrusion with a
steady flow rate under the buoyancy-viscous flow regime (figures 6a and 6b) is weaker
compared with that under the buoyancy-inertial flow regime (figures 6c and 6d).
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Prandtl
number

(Pr) Rayleigh number (Rah for cases with a fin and Ra for cases without a fin)

Rah > Pr10(1 + Pr−1/2)10 Rah or Ra < Pr10(1+Pr−1/2)10

Fin 2 109, 2.29 × 108, 107, 106

4 109, 2.29 × 108

6.63 109, 2.29 × 108, 107, 106

10 107, 106

50 109, 6.87 × 108, 4.58 × 108,

2.29 × 108, 108, 5 × 107, 107, 106

100 109, 6.87 × 108, 4.58 × 108,

2.29 × 108, 108, 5 × 107, 107, 106

No fin 50 109, 2.29 × 108

100 109, 2.29 × 108

Table 1. Parameters of numerical simulations.

Lower intrusion

(a) t = 1.1 (b) t = 1.1

Lower intrusion

(c) t = 2.6 (d) t = 2.6

Figure 6. Intrusions under the buoyancy-viscous and the buoyancy-inertial flow regimes.
(a) Isotherms with a contour interval of 0.25 and (b) streamlines with a contour interval
of 0.013 for Rah = 106 and Pr = 100. (c) Isotherms with a contour interval of 0.25 and
(d) streamlines with a contour interval of 0.0018 for Rah =109 and Pr = 2.

The streamlines in figure 6(b) indicate that a circulation almost occupies the whole
space at the upstream side of the lower intrusion. On the contrary, for Rah = 109

and Pr = 2, a head of the intrusion under the buoyancy-inertial flow regime may be
clearly observed (figure 6c). The strong velocity shear in the intrusion head produces
distinct circulations below the intrusion.
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Starting plume

(a) (b)

Figure 7. Starting plume under the buoyancy-viscous flow regime at t = 2.8. (a) Isotherms
with a contour interval of 0.25 and (b) streamlines with a contour interval of 0.017 for
Rah = 2.29 × 108 and Pr = 50.

After the lower intrusion bypasses the fin, a starting plume is formed. Figure 7
shows a starting plume for Rah = 2.29 × 108 and Pr = 50. Since t =2.8 > ts ∼ 1.1 for
this case, the flow rate to the plume is a constant value at this time. Furthermore,
since the time for the lower intrusion to travel across the full length of the fin is 1.7,
the time counted from the formation of the starting plume is 1.1 > tPv ∼ 0.15 (refer to
(30)), and thus the buoyancy-viscous balance applies to the starting plume in figure 7.
Clearly, due to entrainment by the downstream vertical thermal boundary layer, the
temperature (figure 7a) and flow (figure 7b) structures of the starting plume are not
symmetrical, which are different from those laminar starting plumes generated by
a point or line heating source (refer to Campbell et al. 1989; Kaminski & Jaupart
2003).

Further numerical results show that the starting plume ascends until it strikes the
intrusion under the ceiling. As time goes by, the thermal flow behind the plume front
is drawn to the vertical thermal boundary layer downstream of the fin, as illustrated
in figure 2(c). Figures 8(a) and 8(b) present the isotherms and streamlines for the
case with a relatively low Rayleigh number (Rah = 107 and Pr = 6.63). The numerical
results show that the thermal flow smoothly bypasses the fin, and the vertical thermal
boundary layer downstream of the fin approaches a steady state after the early
perturbations (the LEE and the lower intrusion).

Figures 8(c) and 8(d) present a representative case with a higher Rayleigh number
Rah = 2.29 × 108 (and Pr = 6.63). It is clear that the flow above the fin is unstable,
which is illustrated by the intermittent plume entrained into the vertical thermal
boundary layer in figures 8(c) and 8(d). The intermittent plume above the fin (figure 8c)
in turn triggers oscillations of the downstream vertical thermal boundary layer,
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(a) (b)

Intermittent
plume

(c) (d)

Figure 8. Natural convection flows around the fin under different flow regimes. (a) Isotherms
with a contour interval of 0.125 and (b) streamlines with a contour interval of 0.0144
for Rah =107 and Pr = 6.67 at t =6.3. (c) Isotherms with a contour interval of 0.25 and
(d) streamlines with a contour interval of 0.064 for Rah = 2.29 × 108 and Pr = 6.67 at t = 6.8.

which was also confirmed by the corresponding experimental observations reported
by Xu et al. (2008). As a consequence, the natural convection flows around the fin
eventually approach a time-dependent periodic flow (refer to Xu et al. 2009 for details).
Numerical simulations of Xu et al. (2009) showed that this instability originates from
the unstable fluid layer with an adverse temperature gradient above the fin.

4.2. Validations of selected scales

In this section, the selected scales derived above, describing the transient natural
convection flows around the fin, including the intrusion, the starting plume and
the horizontal thermal flow above the fin, will be validated by the corresponding
numerical results. The numerical results and validations of the vertical thermal
boundary layer scales are described in detail by Lin et al. (2007, 2009), and thus are
not repeated here. Note that for the convenience of validating the scaling relations
obtained in § 2, dimensional time, velocity and thickness scales are adopted in this
section. Furthermore, the fronts and edges of both the intrusions and the plume for
the identification of the thicknesses and positions of these flows are assumed at a
position where the temperature differs from the ambient by 1%.

4.2.1. Intrusion

The scaling relations show that the lower intrusion is initially time-dependent and
governed by different dynamic balances. The scaling relations obtained in § 2.2 may
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Figure 9. Dependence of the front velocity of the intrusion on time under the
buoyancy-viscous flow regime with an unsteady flow rate for Rah < Pr10(1 +Pr−1/2)10.

be classified into four different flow regimes under which the lower intrusion travels:
the buoyancy-viscous flow regime with an unsteady flow rate described by the stages
of t < tν in figure 4(a) and t < ts in figure 4(b), the buoyancy-viscous flow regime with
a steady flow rate by the stages of t > tg in figure 4(a) and t > ts in figure 4(b), the
buoyancy-inertial flow regime with an unsteady flow rate by the stage of tν < t < ts
in figure 4(a), and the buoyancy-inertial flow regime with a steady flow rate by the
stage of ts < t < tg in figure 4(a). In this section, the calculated intrusion front velocity
at various stages and the steady-state thickness of the intrusion are used to validate
the corresponding scaling relations. Because the scaling is valid for both the intrusion
under the fin and the intrusion under the ceiling, data from some cases with no fin
are also presented here.

Consider first the case Rah <Pr10(1 + Pr−1/2)10. Here, the initial intrusion flow is
governed by a buoyancy-viscous balance and, since ts < tν , the inflow to the intrusion
from the vertical boundary layer becomes steady before a transition to a buoyancy-
inertia balance occurs. The intrusion initially travels at a velocity specified by (16b).
As noted above, because of the similarity between the lower intrusion under the fin
and the intrusion under the ceiling of an un-finned cavity, we present two sets of
numerical results for the cases with and without a fin in figure 9 in order to validate
the scaling relation (16b); that is, the numerical results are obtained from the intrusion
under the fin for the case with a fin and from the intrusion under the ceiling for the
case without a fin. Note that the definitions of the Rayleigh numbers for the two
sets of the numerical results are different (refer to (5) and (6)). Here, since the origin
of the coordinate is at the centre of the cavity, the horizontal velocity of the lower
intrusion front is negative.

In the velocity growth stage (that is, t < ts), the front velocity (16b) may be written as
uIν ∼ κRa

9/20
h (t/ts)

7/10/(h(1 + Pr−1/2)1/2) and a corresponding form using Ra in place

of Rah for the no-fin case. The normalized velocities uIνhk−1Ra
−9/20
h (1 + Pr−1/2)1/2

and uIνhk−1Ra−9/20(1 + Pr−1/2)1/2 for the fin and no-fin cases, respectively, are plotted
in figure 9 against (t/ts)

7/10 over the numerically calculated range Rah, Ra = 106 ∼ 109

and Pr = 7 ∼ 100. For t < ts , the relationship is close to linear, as shown in the figure,
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Figure 10. Dependence of the front velocity of the intrusion on time under the
buoyancy-viscous flow regime with a steady flow rate for Rah <Pr10(1 + Pr−1/2)10.

with a correlation coefficient (r) of 0.95 over that range. The relatively large deviation
close to t ∼ ts occurs mainly for the intrusion beneath the fin for those cases in which
Pr is relatively small. In these cases, the intrusion has reached the end of the fin
around this time and is being influenced by the transition to a rising plume. The
figure therefore supports the scaling (16b) for the initial velocity.

For Rah <Pr10(1 + Pr−1/2)10 and t > ts , the lower intrusion continues to travel
under a buoyancy-viscous balance with a velocity scaled by (20b). For the present
Rah and Pr values, when t > ts the lower intrusion has usually reached the end of
the fin. However, again we are able to validate (20b) using numerical simulations
for the case without a fin (see table 1). The scale (20b) remains valid for this case,
with Rah replaced by Ra. From (20b), using Ra, the velocity scale may be written
as uIνs ∼ κRa9/20/(h(1 + Pr−1/2)1/2(t/ts)

1/5). In figure 10, the normalized velocity scale
uIνshκ−1Ra

−9/20
h (1 + Pr−1/2)1/2 is plotted against (t/ts)

−1/5 for the period past the
initial increase in velocity, that is past the peak in the velocities shown in figure 9.
Figure 10 shows that for t > ts , the normalized velocity is linearly dependent on
(t/ts)

−1/5 with a correlation coefficient of 0.915, supporting the scaling (20b). Note
that the scaling for t < ts , that is for (t/ts)

−1/5 > 1 in figure 10, has been confirmed in
figure 9 and its associated discussion.

For Rah >Pr10(1 + Pr−1/2)10, large Pr values imply that very large values of Rah are
required. For example, Pr = 50 requires that Rah >O(1017). Since the Rah values in
the present simulations are limited to O(109) as previously discussed, only numerical
results with low Prandtl numbers are applied for the validation of the scales in this
flow regime.

In this case the initial intrusion is governed by a buoyancy-viscous balance and has
a velocity described by (16b) for the time t < tν , where tν is given by (15) and tν < ts .
This scale has been verified above. For tν < t < ts , the inflow to the intrusion remains
unsteady but is governed by a buoyancy-inertia balance described by (17b). This scale
may be written as uIg ∼ κRa

1/3
h P r7/6(1 + Pr−1/2)2/3(t/tν)

1/2/h.
For the purpose of illustrating the transition from the buoyancy-viscous flow

regime to the buoyancy-inertial flow regime, figures 11(a) and 11(b) show the
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Figure 11. Dependence of the front velocity of the lower intrusion on time under the
buoyancy-inertial flow regime with an unsteady flow rate for Rah >Pr10(1 +Pr−1/2)10.

(a) −uIgh/κRa
−1/3
h P r−7/6(1 + Pr−1/2)−2/3 vs. (t/tν)

1/2 for Rah = 107 and Pr = 2. (b) −uIνh/κ

Ra
−1/3
h P r−7/6(1 + Pr−1/2)−2/3 vs. (t/tν)

7/10 for Rah = 107 and Pr = 2. (c) −uIh/κRa
−5/6
h P r−7/6

(1 + Pr−1/2)−2/3 vs. (t/tν)
1/2 for different Rayleigh and Prandtl numbers.

dependence of the front velocity of the lower intrusion on time for a typical
case of Rah = 107 and Pr = 2. Figure 11(a) plots the normalized velocity scale
uIghk−1Ra

−1/3
h P r−7/6(1 + Pr−1/2)−2/3 against (t/tν)

1/2, with the expectation that for
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Figure 12. (a) Front velocity and (b) thickness of the lower intrusion at t ∼ ts under the
buoyancy-inertial flow regime for Rah > Pr10(1 +Pr−1/2)10.

t > tν the dependence will be linear, and different to the slope for t < tν . The figure
demonstrates this behaviour. Figure 11(b) plots the intrusion velocity (scaled by a
buoyancy-viscous balance) against (t/tν)

7/10, with the expectation that for t < tν the
dependence is linear and different to the slope for t > tν . That is again the case,
demonstrating the transition from a buoyancy-viscous balance to a buoyancy-inertia
balance around tν . It is worth noting that the transition process from the buoyancy-
viscous flow regime to the buoyancy-inertial flow regime around t ∼ tν is smooth
rather than abrupt, as seen in figures 11(a) and 11(b).

Numerical results for a much wider range of Rah and Pr are shown in figure 11(c).
This figure again plots uIghk−1Ra

−1/3
h P r−7/6(1 + Pr−1/2)−2/3 against (t/tν)

1/2. For
t > tν the dependence is approximately linear, with a correlation coefficient of 0.993,
supporting the scaling prediction (17b).

For Rah > Pr10(1 + Pr−1/2)10 and t > ts , the inflow to the intrusion is steady, with
a velocity continuing to be governed by a buoyancy-inertia balance, scaled by (18b),
at least until viscous influences become important again at time tg described by (19).
Figure 12(a) plots the intrusion velocity from this steady part of the flow, normalized
by k/h against the non-dimensional parameter Ra

5/12
h P r1/3(1 + Pr−1/2)−1/6. This shows

a clear linear fit with a correlation coefficient of 0.999.
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Furthermore, in order to validate the scaling relation (18a), we also measured the
thickness of the lower intrusion based on the numerical solutions, which is defined
as the vertical distance from the lower fin surface to the interior edge of the lower
intrusion (at which T = 0.01). The numerical results are plotted in figure 12(b) for
different Rah and Pr values. It is seen in this figure that the calculated thickness,
normalized by h, has a linear dependence with Ra

−1/6
h P r−1/3(1 + Pr−1/2)−1/3 with a

correlation coefficient of 0.999, as predicted by (18a). For times greater than tg , the
velocity scaling for the buoyancy-viscous balance under steady conditions is again
relevant.

4.2.2. Starting plume

The starting plume ascends under either a buoyancy-inertial balance or a buoyancy-
viscous balance, depending on the values of Rah, Pr and the fin length. For the present
numerical simulations, since the selected fin length is larger than the total distance
over which the lower intrusion with an unsteady flow rate travels, that is, l > lgs or lνs

(see (22) and (24)), the flow rate to the plume is always constant. Furthermore, since
tP ν described by (30) is very small for the present numerical results, only the scaling
relations for the starting plume under a buoyancy-viscous balance with a steady flow
rate, specified by (32a) and (32b), are validated in this section.

We treat the horizontal distance from the end of the fin to the interior edge
of the plume, as defined above, as the calculated thickness of the starting plume.
The calculated thickness, normalized by h, is plotted in figure 13(a) against
Ra

−1/4
h (1 + Pr−1/2)−1/6 according to (32a). A good linear correlation is seen in this

figure with a correlation coefficient of 0.998, supporting the scaling prediction (32a).
In order to validate the scaling relation (32b), we adopt the velocity of the plume

front passing through the horizontal plane at y = 0.5 as a characteristic velocity
scale. Figure 13(b) presents the numerical results normalized by κ/h against the
scaling prediction Ra

1/2
h (1 + Pr−1/2)−1/3 as suggested by (32b). The numerical results

are consistent with the scaling relation (32b) with a correlation coefficient of 0.989.
However, the variation between the cases of different Pr values is also discernible.
This could be attributed to the fact that the entrainment of the plume head (see
figures 2b and 7), which is produced by a strong nonlinear velocity shear of the
starting plume, is neglected in the scaling analysis.

4.2.3. Horizontal thermal flow above the fin

The scaling relation (39) indicates that the horizontal thermal flow above the fin
could be dominated by either a buoyancy-inertial balance or a buoyancy-viscous
balance, which is dependent on the values of Rah, Pr and the fin length. For the
present numerical simulations, since we have either l ∼ lA or l > lA and, therefore,
only the horizontal thermal flow above the fin under a buoyancy-viscous flow regime
specified by (36a) and (36b) is validated.

The vertical distance from the upper fin surface to the interior edge of the horizontal
thermal flow is taken as the calculated thickness (note that the interior fluid is
isothermal in the early stage of the overall flow development). The calculated thickness,
normalized by h, is plotted against the scaling value (l/h)1/4Ra

−3/16
h (1 + Pr−1/2)−1/8

from (36a) in figure 14(a). Clearly, the numerical results agree with the scaling
prediction with a correlation coefficient of 0.997; that is, the thickness of the horizontal
fluid layer above the fin under the buoyancy-viscous flow regime is characterized by
(36a).
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Figure 14(b) shows the calculated velocity normalized by κ/h against the scaling

prediction (l/h)−1/4Ra
7/16
h (1 + Pr−1/2)−3/8 from (36b). Here, the maximum of the

horizontal velocity in the fluid layer above the fin along the vertical line through
the fin end is regarded as the calculated velocity. Since the fluid layer above the fin is
unstable for the cases with Rayleigh numbers larger than a critical value, the time-
averaged velocity is adopted for the validation of the scaling relation. Clearly, the
scaling prediction of (36b) is consistent with the calculated results with a correlation
coefficient of 0.998.

5. Conclusions
In this paper, the transient natural convection flows around a thin fin placed at the

mid height of the sidewall of a differentially heated cavity are investigated using a
scaling analysis and direct numerical simulations. A set of scaling relations quantifying
the transient natural convection flows around the fin under different dynamic balances
has been derived and validated by the corresponding numerical simulations.

The lower intrusion under the fin is initially fed by a time-varying flow rate from the
vertical thermal boundary layer, and subsequently by a steady flow rate. The scaling
arguments of Huppert (1982) and Maxworthy (1983) are relevant to the unsteady part
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of the flow. Applying these results to the particular flow rate predicted by the vertical
boundary-layer scaling reveals that for the case Rah >Pr10(1 + Pr−1/2)10, the intrusion
travels under a buoyancy-viscous balance if time is sufficiently small. Subsequently,
the intrusion is dominated by a buoyancy-inertial balance encompassing the period
when the flow rate to the intrusion becomes steady. At much later times, the intrusion
travels under a buoyancy-viscous balance again, and its velocity steadily reduces and
its thickness increases. For the case of Rah <Pr10(1 + Pr−1/2)10, the scaling relations
show that a buoyancy-inertial flow regime does not occur and a buoyancy-viscous
balance dominates the development of the intrusion during the periods of both
increasing flow rate and steady flow rate.

Once the intrusion beneath the fin reaches the end of the fin, it rises as a plume
as it is positively buoyant when compared with the ambient, which at this stage
remains isothermal at the initial temperature. In some cases, the flow rate from the
intrusion to the plume depends on time to certain power. The scaling shows that a
critical value of the power is γc = 3/2. If t � tP ν for γ >γc or t � tP ν for γ <γc, the
starting plume ascends under the buoyancy-viscous balance, where tP ν is the time
for the transition between viscous or inertial dominance in the plume. On the other
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hand, if t � tP ν for γ > γc or t � tP ν for γ < γc, a buoyancy-inertial balance dominates
the development of the starting plume. For the case of γ = γc, if qc � ν1/2gβ�T , the
balance is mainly between the buoyancy and viscous terms, which is independent of
time. If qc � ν1/2gβ�T , the balance is between the buoyancy and inertial terms. For
qc ∼ ν1/2gβ�T , the inertial and viscous terms are comparable.

The horizontal thermal flow above the fin is also described using a simple scaling
analysis. The flow above the fin is supplied by a constant flow rate from the intrusion
flow beneath the fin, following the entrainment of the rising plume into the vertical
boundary layer downstream of the fin. The flow is governed in the initial part of the
fin by a buoyancy-advection balance, which, if the fin is sufficiently long, becomes
dominated by a buoyancy-viscous balance. The fluid layer above the fin could be
unstable if its adverse temperature gradient is larger than a critical value.

The scaling relationships describe very complex interactions between the vertical
boundary layer development, the intrusion beneath the fin, the initial rising plume
emanating from the end of the fin, and the fully developed horizontal flow above
the fin. Although the scaling relations are relevant to a wide range of parameter
values for the individual flows, only a relatively small subset of the flow regimes may
be achieved in the context of the flows in the cavity with a fin. Consequently, the
validation by the numerical simulations is necessarily limited.

Furthermore, it is worth noting again that the interior fluid in the cavity gradually
becomes stratified after the intrusion from the opposing sidewall strikes the finned
sidewall but remains isothermal at the earlier stage (refer to Xu et al. 2009).
Consequently, the present scaling relations are not applicable to the flows around the
fin at the much later time scale when the cavity flows have reached steady states.
In addition, since the dynamic mechanisms of the thermal boundary layer flow are
different between Pr > 1 and Pr < 1 (Patterson & Imberger 1980; Lin & Armfield
2005), the present scaling relations are applicable only to the cases of Pr > 1 rather
than those of Pr < 1, for which multiple steady states of the cavity flow may exist
(see Gelfgat, Bar-yoseph & Yarin 1999).

With the above-mentioned limitations, the numerical results in general support the
scaling results presented, leading to an understanding of how this complex early flow
develops. A separate investigation is required for the development of the longer time
scale flow as the interior becomes stratified, leading ultimately to a cavity-wide steady
state.

The authors would like to thank the Australian Research Council for its financial
support.
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